344
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Miao, H., Sun, P., Liu, Q., Miao, Y., Liu, J., Zhang, K., et al., (2017a). Genome-wide analyses
of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress
responses in banana. Scientific Reports, 7, 3536. doi: 10.1038/s41598-017-03872-w.
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M.,
Hatipoğlu, R., et al., (2018). DNA molecular markers in plant breeding: Current status
and recent advancements in genomic selection and genome editing. Biotechnology &
Biotechnological Equipment, 32(2), 261–285. doi: 10.1080/13102818.2017.1400401.
Nandy, S., Pathak, B., Zhao, S., & Srivastava, V., (2019). Heat-shock-inducible CRISPR/
Cas9 system generates heritable mutations in rice. Plant Direct, 3, e00145. https://doi.
org/10.1002/pld3.145.
Navet, N., & Tian, M., (2020). Efficient targeted mutagenesis in allotetraploid sweet basil by
CRISPR/Cas9. Plant Direct, 4(6), e00233. https://doi.org/10.1002/pld3.233.
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., & Kamoun, S., (2013). Targeted
mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided
endonuclease. Nat. Biotechnol., 31, 691.
Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S., (2017). Rapid generation
of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep., 7, 482.
Nieves-Cordones, M., Mohamed, S., Tanoi, K., Kobayashi, N. I., Takagi, K., Vernet, A.,
Guiderdoni, E., et al., (2017). Production of low-Cs+ rice plants by inactivation of the
K+ transporter OsHAK1 with the CRISPR-Cas system. Plant Journal, 92(1), 43–56. doi:
10.1111/tpj.13632.
Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J.
S., Li, C., et al., (2019). Broad-spectrum resistance to bacterial blight in rice using genome
editing. Nat. Biotechnol., 37(11), 1344–1350. doi: 10.1038/s41587-019-0267-z.
Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N., & Solano, R., (2019). Design of a bacterial
speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J.,
17, 665–673.
Osakabe, Y., & Osakabe, K., (2017). Genome editing to improve abiotic stress responses in
plants. In: Progress in Molecular Biology and Translational Science (Vol. 149, pp. 99–109).
Elsevier: Amsterdam, The Netherlands.
Ou, W., Mao, X., Huang, C., Tie, W., Yan, Y., Ding, Z., et al., (2018). Genome-wide
identification and expression analysis of the KUP family under abiotic stress in cassava
(Manihot esculenta Crantz). Frontiers in Physiology, 9, 17. doi: 10.3389/fphys.2018.00017.
Pandita, D., (2021). Cas9 technology: An innovative approach to enhance phytoremediation.
In: Pirzadah, T. B., Malik, B., & Hakeem, K. R., (eds.), Plant-Microbe Dynamics: Recent
Advances for Sustainable Agriculture. CRC Press, ISBN1000388913, 9781000388916.
Pandita, D., (2021). CRISPR/Cas mediated genome editing for improved stress tolerance
in plants. In Aftab, T., & Hakeem, K. R., (eds.), Frontiers in Plant–Soil Interaction:
Molecular Insights into Plant Adaptation (pp. 259–291). Academic Press, Elsevier. https://
doi.org/10.1016/B978-0-323-90943-3.00001-8.
Pandita, D., (2021). CRISPR/Cas mediated genome editing technologies in plants. In Aftab,
T., & Hakeem, K. R., (eds.), Plant Abiotic Stress Physiology: Responses and Adaptations
(Vol. 1). Hard ISBN: 9781774630167.
Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., et al., (2017). Engineering canker resistant
plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter
in citrus. Plant Biotechnol. J., 10, 1011–1013.